A Verified Optimizer for Quantum Circuits

Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, Michael Hicks

&

Verified translation between low-level quantum languages

Kartik Singhal, Robert Rand, Michael Hicks

PLanQC 2020
Verified Compiler Stack

- End goal: verified compiler stack for quantum programs
Verified Compiler Stack

- End goal: *verified compiler stack* for quantum programs

High-level Language
E.g. QWIRE, Quipper, Q#

Unoptimized IR
E.g. OpenQASM, Quil

Optimized IR
E.g. OpenQASM, Quil

Hardware Instructions

Optimization
Circuit synthesis
Circuit mapping
...
Verified Compiler Stack

- End goal: *verified compiler stack* for quantum programs

High-level Language
E.g. QWIRE, Quipper, Q#

Unoptimized IR
E.g. OpenQASM, Quil

Optimized IR
E.g. OpenQASM, Quil

Hardware Instructions

Means that we’ve *formally verified* that the transformation is semantics-preserving

Optimization
Circuit synthesis
Circuit mapping...

"verified"
Verified Compiler Stack

- We present **VOQC**, our Verified Optimizer for Quantum Circuits, which is built on top of **SQIR**, our Small Quantum Intermediate Representation.

- Implemented in 8000 lines of Coq code, with 1500 for core SQIR and the rest for program transformations.

- 400 lines of standalone OCaml code for parsing and translating OpenQASM.

- We extract VOQC to OCaml and compile it to a binary, so using VOQC doesn’t require knowledge of Coq or OCaml.
Verified Compiler Stack

- End goal: **verified compiler stack** for quantum programs

Diagram:
- High-level Language: E.g. QWIRE, Quipper, Q#
- Unoptimized IR: E.g. OpenQASM, Quil
- Optimized IR: E.g. OpenQASM, Quil
- Hardware Instructions
- Unoptimized SQIR
- Optimized SQIR
- VOQC
SQIR

- Syntax

\[U := U_1; U_2 | G q | G q_1 q_2 \]
\[P := \text{skip} | P_1; P_2 | U | \text{meas } q P_1 P_2 \]

- Semantics assumes a \textbf{global register} of size \(d \)
 - A unitary program corresponds to a unitary matrix of size \(2^d \times 2^d \)
 - A non-unitary program corresponds to a function between density matrices of size \(2^d \times 2^d \)
SQIR

- Syntax

\[
U := U_1; U_2 \mid G q \mid G q_1 q_2 \\
P := \text{skip} \mid P_1; P_2 \mid U \mid \text{meas } q \ P_1 \ P_2
\]

- Semantics assumes a **global register** of size \(d\)

<table>
<thead>
<tr>
<th>Unitary semantics</th>
<th>Non-unitary semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\llbracket U_1; U_2 \rrbracket_d = \llbracket U_2 \rrbracket_d \times \llbracket U_1 \rrbracket_d)</td>
<td>(\llbracket \text{skip} \rrbracket_d(\rho) = \rho)</td>
</tr>
<tr>
<td>(\llbracket G q \rrbracket_d = \begin{cases} \text{apply}1(G_1, q, d) & \text{well-typed} \ 0{2d} & \text{otherwise} \end{cases})</td>
<td>(\llbracket P_1; P_2 \rrbracket_d(\rho) = (\llbracket P_2 \rrbracket_d \circ \llbracket P_1 \rrbracket_d)(\rho))</td>
</tr>
<tr>
<td>(\llbracket G q_1 q_2 \rrbracket_d = \begin{cases} \text{apply}2(G_2, q_1, q_2, d) & \text{well-typed} \ 0{2d} & \text{otherwise} \end{cases})</td>
<td>(\llbracket U \rrbracket_d(\rho) = \llbracket U \rrbracket_d \times \rho \times \llbracket U \rrbracket_d^\dagger)</td>
</tr>
<tr>
<td>(\llbracket \text{meas } q \ P_1 \ P_2 \rrbracket_d(\rho) = \llbracket P_2 \rrbracket_d(\ket{0}_q \bra{0} \times \rho \times \ket{0}_q \bra{0})) + (\llbracket P_1 \rrbracket_d(\ket{1}_q \bra{1} \times \rho \times \ket{1}_q \bra{1}))</td>
<td></td>
</tr>
</tbody>
</table>
VOQC Transformations

- Unitary optimizations - inspired by Nam et al.¹
 - Gate propagation and cancellation
 - Rotation merging

- Non-unitary optimizations
 - Classical state propagation
 - Removing z-rotations before measurement

- Circuit mapping
 - Naive mapping for arbitrary connected graph

¹Nam et al. Automated Optimization of Large Quantum Circuits with Continuous Parameters. 2018.
Example: X/Z Propagation

- Simplified code:

```haskell
let propagate_X q lst = match lst with
  | []       → [X q]
  | X q :: t  → t
  | H q :: t  → H q ; propagate_Z q t
  | Rz q :: t → Rz† q ; propagate_X q t
  ...
```
Example: X/Z Propagation

\[
\begin{array}{c}
X & H & H & X \\
\rightarrow & (\text{A}) & H & Z & H & X \\
\rightarrow & H & H & X & X \\
\rightarrow & H & Z & H & X \\
\rightarrow & H & H \\
\end{array}
\]

- Simplified code:

```haskell
let propagate_X q lst = match lst with
  | [] → [X q]
  | X q :: t → t
  | H q :: t → H q ; propagate_Z q t (A)
  | Rz q :: t → Rz† q ; propagate_X q t
  ...```

In our development we denote a language for describing quantum programs that propagates through the rightmost register (i.e., the number of available qubits). It is the same as the underlying set used by OpenQASM. We say that two unitary programs are equivalent, written \( U \equiv o \), if their denotation is the same, i.e., \( U \equiv o \). We can also define equivalence \( \equiv \) for removing Hadamard gates. Equivalences for removing Hadamard gates adapt from Nam et al. [34, Figure 5].

To describe general quantum programs (for programs allowing measurement and initialization), let \( Gq \) be a language for describing quantum programs that allows measurement and initialization. We then describe the expanded language, which allows measurement and initialization.
Example: X/Z Propagation

- Simplified code:

```haskell
let propagate_X q lst = match lst with
 | [] → [X q] B
 | X q :: t → t
 | H q :: t → H q ; propagate_Z q t
 | Rz q :: t → Rz† q ; propagate_X q t
 ...```

This section presents the syntax and semantics of a general single-qubit rotation parameterized by three real numbers. It requires a matrix interpretation for every unitary gate. The advantage of this description is that it is deeply embedded in the Coq proof assistant. In this paper, we consider a single set of gates.

A unitary program is a deeply embedded computation of quantum bits. Unitary programs allow swaps two qubits, is a sequence of three gates. We say that two unitary programs are equivalent, written ≡, if every gate application propagates through the rightmost gate and otherwise propagates through the leftmost gate. The density matrix semantics of the phase polynomial. This is a restriction that we plan to relax. The command |\[
\begin{array}{c}
X \\
H \\
H \\
X
\end{array}
\]
for verifying equivalence of quantum programs, however, we adapt from Nam et al. [34]. The command

```
| \[
\begin{array}{c}
X \\
H \\
H \\
X
\end{array}
\]
```

is identical to Nam et al.'s, written \((\cdot)\). The density matrix semantics of the phase polynomial. This is a restriction that we plan to relax. The command

```
| \[
\begin{array}{c}
X \\
H \\
H \\
X
\end{array}
\]
```

Although our merge operation is identical to Nam et al.'s, \((\cdot)\), the program, it tracks the Boolean function associated with the program. In the third step the leftmost gate propagates through the rightmost gate. In the third step the leftmost gate propagates through the rightmost gate.

\((\cdot)\), when there exists a branching measurement, 3 is two-qubit gate cancellation, 3 is two-qubit gate cancellation.
Proof Overview

- For a transformation T, we want to prove that
 $$\forall P, \|T(P)\| = \|P\|$$ (up to a global phase)
- For complex optimizations, rather than proving this equality directly we may prove that $T(P)$ and P have the same output on every basis state
- For circuit mapping we also prove that for every P, $T(P)$ respects the provided connectivity constraints
- Proofs proceed by induction on P
Example: X/Z Propagation

- We will want to prove that for any instruction list lst, (propagate_X q lst) has the same denotation as (X q ; lst)
 - propagate_X q lst ≡ X q ; lst

- Proof proceeds by induction on lst

  ```
  let propagate_X q lst = match lst with
  | [] → [X q]
  | X q :: t → t
  | H q :: t → H q ; propagate_Z q t
  | Rz q :: t → Rz† q ; propagate_X q t
  ...
  ```
Example: X/Z Propagation

- We will want to prove that for any instruction list \(\text{lst}\),
 \((\text{propagate}_X q \text{ lst})\) has the same denotation as \((X q \; \text{lst})\)

- \(\text{propagate}_X q \text{ lst} \equiv X q \; \text{lst}\)

- Proof proceeds by induction on \(\text{lst}\)

 \[
 \text{let } \text{propagate}_X q \text{ lst} = \text{match } \text{lst} \text{ with }
 \begin{align*}
 &| [] &\rightarrow [X q] &\text{propagate}_X q [] \rightarrow [X q] \equiv X q;[] \\
 &| X q :: t &\rightarrow t \\
 &| H q :: t &\rightarrow H q ; \text{propagate}_Z q t \\
 &| Rz q :: t &\rightarrow Rz^\dagger q ; \text{propagate}_X q t \\
 &| \ldots
 \end{align*}
 \]
Example: X/Z Propagation

- We will want to prove that for any instruction list lst, (propagate_X q lst) has the same denotation as (X q ; lst)
 - propagate_X q lst ≡ X q ; lst

- Proof proceeds by induction on lst

```ocaml
let propagate_X q lst = match lst with
| []         → [X q]
| X q :: t   → t    propagate_X q (X q :: t) → t ≡ X q ; X q ; t
| H q :: t   → H q ; propagate_Z q t
| Rz q :: t  → Rz† q ; propagate_X q t
...
```
Example: X/Z Propagation

- We will want to prove that for any instruction list lst, (propagate_X q lst) has the same denotation as (X q ; lst)
 - propagate_X q lst \(\equiv\) X q ; lst

- Proof proceeds by induction on lst
  ```
  let propagate_X q lst = match lst with
  | [] \rightarrow [X q]
  | X q :: t \rightarrow t
  | H q :: t \rightarrow H q ; propagate_Z q t
  | Rz q :: t \rightarrow Rz^\dagger q ; propagate_X q t
  ...
  ```
Verifying Matrix Equivalences

• Proving matrix equivalences in Coq is tedious

• E.g. \(X \ n; \ CNOT \ m \ n \equiv CNOT \ m \ n; \ X \ n \)

\[
apply_1(X, n, d) \times apply_2(CNOT, m, n, d) = apply_2(CNOT, m, n, d) \times apply_1(X, n, d).
\]
Verifying Matrix Equivalences

- Proving matrix equivalences in Coq is tedious
- E.g. \(X \ n; \ CNOT \ m \ n \equiv CNOT \ m \ n; \ X \ n \)

\[
\begin{align*}
apply_1(X, n, d) & \times apply_2(CNOT, m, n, d) = apply_2(CNOT, m, n, d) \times apply_1(X, n, d).
\end{align*}
\]

\[
\begin{align*}
apply_1(X, n, d) &= I_{2^n} \otimes \sigma_x \otimes I_{2^q} \\
apply_2(CNOT, m, n, d) &= I_{2^m} \otimes |1\rangle\langle 1| \otimes I_{2^p} \otimes \sigma_x \otimes I_{2^q} + I_{2^m} \otimes |0\rangle\langle 0| \otimes I_{2^p} \otimes I_2 \otimes I_{2^q}
\end{align*}
\]
Verifying Matrix Equivalences

- Proving matrix equivalences in Coq is tedious

E.g.

\[X n; \text{CNOT} m n \equiv \text{CNOT} m n; X n \]

\[\text{apply}_1(X, n, d) \times \text{apply}_2(\text{CNOT}, m, n, d) = \text{apply}_2(\text{CNOT}, m, n, d) \times \text{apply}_1(X, n, d). \]

\[I_{2m} \otimes |1\rangle\langle 1| \otimes I_{2p} \otimes I_2 \otimes I_{2q} + I_{2m} \otimes |0\rangle\langle 0| \otimes I_{2p} \otimes \sigma_x \otimes I_{2q}. \]
Verifying Matrix Equivalences

- Proving matrix equivalences in Coq is tedious

- E.g. \(X \ n; \ CNOT \ m \ n \equiv CNOT \ m \ n; \ X \ n \)

\[
\text{apply}_1(X, n, d) \times \text{apply}_2(CNOT, m, n, d) = \text{apply}_2(CNOT, m, n, d) \times \text{apply}_1(X, n, d).
\]

- Fortunately, this is mostly automated in our development
Experiment

- Evaluated unitary optimizations

- Compared against Qiskit, t\textit{\texttt{tket}}, PyZX, Nam et al. and Amy et al.2

- Benchmark of 29 programs from Amy et al., ranging from 45 to 61629 gates and 5 to 192 qubits

- Considered reduction in total gate count and T-gate count

2Amy et al. \textit{Polynomial-Time T-Depth Optimization of Clifford+T Circuits Via Matroid Partitioning}. 2014.
Results

- Average gate count reduction

| Nam et al. | Qiskit | t|ket⟩ | VOQC |
|------------|--------|-------|------|
| 26.5% | 10.7% | 11.2% | 18.4%|

- Average T-count reduction

<table>
<thead>
<tr>
<th>Amy et al.</th>
<th>Nam et al.</th>
<th>PyZX</th>
<th>VOQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.9%</td>
<td>41.0%</td>
<td>42.6%</td>
<td>39.4%</td>
</tr>
</tbody>
</table>
Results

- Average gate count reduction

<table>
<thead>
<tr>
<th>Nam et al.</th>
<th>Qiskit</th>
<th>tket</th>
<th>VOQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>26.5%</td>
<td>10.7%</td>
<td>11.2%</td>
<td>18.4%</td>
</tr>
</tbody>
</table>

- Average T-count reduction

<table>
<thead>
<tr>
<th>Amy et al.</th>
<th>Nam et al.</th>
<th>PyZX</th>
<th>VOQC</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.9%</td>
<td>41.0%</td>
<td>42.6%</td>
<td>39.4%</td>
</tr>
</tbody>
</table>
Is the translation between industry IRs and SQIR correct?

- High-level Language
 E.g. QWIRE, Quipper, Q#

- Unoptimized IR
 E.g. OpenQASM, Quil

- Optimized IR
 E.g. OpenQASM, Quil

- Hardware Instructions

- Unoptimized SQIR

- Optimized SQIR

- VOQC
Is the translation between industry IRs and SQIR correct?

- **High-level Language**
 - E.g. QWIRE, Quipper, Q#

- **Unoptimized IR**
 - E.g. OpenQASM, Quil

- **Optimized IR**
 - E.g. OpenQASM, Quil

- **Hardware Instructions**

- **Unoptimized SQIR**

- **Optimized SQIR**

- **VOQC**
We verify translation between OpenQASM and SQIR

- A feature-complete parser for OpenQASM
- Translation between unitary fragments of the two languages
- A denotational semantics for unitary OpenQASM
- Semantic preservation property of translation
Unitary SQIR and OpenQASM have fairly similar abstract syntax
Unitary SQIR and OpenQASM have fairly similar abstract syntax

SQIR

\[U ::= U_1; U_2 | G q | G q_1 q_2 \]
\[G ::= H | CNOT \]

Qubits are indices into a global register
Unitary SQIR and OpenQASM have fairly similar abstract syntax

SQIR

\[U ::= U_1; U_2 | G q | G q_1 q_2 \]

\[G ::= H | CNOT \]

Qubits are indices into a global register

OpenQASMa

Expression

\[E ::= x | x[i] \]

Unitary Statement

\[U ::= H(E) | C\text{X}(E_1, E_2) | E(E_1, \ldots, E_n) | U_1; U_2 \]

Command

\[C ::= \text{qreg } x[i] | \text{gate } x(x_1, \ldots, x_n) \{ U \} | U | C_1; C_2 \]

OpenQASM is a larger language that supports declaring qubit registers and user-defined gates
Unitary SQIR and OpenQASM have fairly similar abstract syntax

SQIR

\[U ::= U_1; U_2 \mid G \ q \mid G \ q_1 \ q_2 \]

\[G ::= H \mid \text{CNOT} \]

Qubits are indices into a global register

OpenQASM

Expression

\[E ::= x \mid x[i] \]

Unitary Statement

\[U ::= H(E) \mid \text{CX}(E_1, E_2) \mid E(E_1, \ldots, E_n) \mid U_1; U_2 \]

Command

\[C ::= \text{qreg} \ x[i] \mid \text{gate} \ x(x_1, \ldots, x_n) \{ \ U \} \mid U \mid C_1; C_2 \]

OpenQASM is a larger language that supports declaring qubit registers and user-defined gates
Unitary SQIR and OpenQASM have fairly similar abstract syntax

SQIR

\[
U ::= U_1; U_2 \mid G \ q \ q_1 \ q_2
\]

\[
G ::= H \mid \text{CNOT}
\]

Qubits are indices into a global register

OpenQASM

Expression

\[
E ::= x \mid x[i]
\]

Unitary Statement

\[
U ::= \text{H}(E) \mid \text{CX}(E_1, E_2) \mid E(E_1, \ldots, E_n) \mid U_1; U_2
\]

Command

\[
C ::= \text{qreg} \ x[i] \mid \text{gate} \ x(x_1, \ldots, x_n) \ \{ \ U \ \} \mid U \mid C_1; C_2
\]

OpenQASM is a larger language that supports declaring qubit registers and user-defined gates
Unitary SQIR and OpenQASM have fairly similar abstract syntax

SQIR

\[
U ::= U_1; U_2 \mid G q \mid G q_1 q_2 \\
G ::= H \mid \text{CNOT}
\]

Qubits are indices into a global register

OpenQASM

Expression

\[
E ::= x \mid x[i]
\]

Unitary Statement

\[
U ::= H(E) \mid \text{CX}(E_1, E_2) \mid E(E_1, \ldots, E_n) \mid U_1; U_2
\]

Command

\[
C ::= \text{qreg } x[i] \mid \text{gate } x(x_1, \ldots, x_n) \{ U \} \mid U \mid C_1; C_2
\]

OpenQASM is a larger language that supports declaring qubit registers and user-defined gates

Only shown a sample gate set of Hadamard (H) and controlled NOT (\text{CNOT} or \text{CX})
Unitary SQIR and OpenQASM have fairly similar abstract syntax

SQIR

\[
U ::= U_1; U_2 | G q | G q_1 q_2 \\
G ::= H | CNOT
\]

Qubits are indices into a global register

OpenQASM\(^b\)

Expression

\[
E ::= x | x[i]
\]

Unitary Statement

\[
U ::= H(E) | CX(E_1, E_2) | E(E_1, \ldots, E_n) | U_1; U_2
\]

Command

\[
C ::= qreg x[i] | gate x(x_1, \ldots, x_n) \{ U \} | U | C_1; C_2
\]

OpenQASM is a larger language that supports declaring qubit registers and user-defined gates

Denotational semantics of SQIR and OpenQASM correspond
Denotational semantics of SQIR and OpenQASM correspond

SQIR

\[[U_1; U_2]_d = [U_2]_d \times [U_1]_d \]

\[[G_1 q]_d = \begin{cases}
 \text{apply}_1(G_1, q, d) & \text{well-typed} \\
 0_{2^d} & \text{otherwise}
\end{cases} \]

\[[G_2 q_1 q_2]_d = \begin{cases}
 \text{apply}_2(G_2, q_1, q_2, d) & \text{well-typed} \\
 0_{2^d} & \text{otherwise}
\end{cases} \]

A SQIR unitary program denotes a \(2^d \times 2^d \) unitary matrix.
Denotational semantics of SQIR and OpenQASM correspond

SQIR

\[
\| U_1; U_2 \|_d = \| U_2 \|_d \times \| U_1 \|_d \\
\| G_1 q \|_d = \begin{cases}
\text{apply}_1(G_1, q, d) & \text{well-typed} \\
0_{2^d} & \text{otherwise}
\end{cases}
\]

\[
\| G_2 q_1 q_2 \|_d = \begin{cases}
\text{apply}_2(G_2, q_1, q_2, d) & \text{well-typed} \\
0_{2^d} & \text{otherwise}
\end{cases}
\]

A SQIR unitary program denotes a \(2^d \times 2^d\) unitary matrix

OpenQASM

Value \(V = \text{Location, } l + \text{Loc. Array, } (l_j, \ldots, l_k) + \text{Unitary Gate, } \lambda(x_1, \ldots, x_n).U\)

Environment \(\sigma = \text{Identifier } \rightarrow \text{Value}\)

Quantum State \(|\psi\rangle = 2^d\text{-dimension complex vector}\)
Denotational semantics of SQIR and OpenQASM correspond

SQIR

\[
\| [U_1; U_2]_d \| = \| U_2 \|_d \times \| U_1 \|_d
\]

\[
\| G_1 q \|_d = \begin{cases}
\text{apply}_1(G_1, q, d) & \text{well-typed} \\
0_{2^d} & \text{otherwise}
\end{cases}
\]

\[
\| G_2 q_1 q_2 \|_d = \begin{cases}
\text{apply}_2(G_2, q_1, q_2, d) & \text{well-typed} \\
0_{2^d} & \text{otherwise}
\end{cases}
\]

OpenQASM

Value \(V \) = Location, \(l + \text{Loc. Array,} (l_j, \ldots, l_k) \)
+ Unitary Gate, \(\lambda(x_1, \ldots, x_n).U \)

Environment \(\sigma \) = Identifier \(\rightarrow \) Value

Quantum State \(|\psi\rangle \) = \(2^d \)-dimension complex vector

\((_ - _)_E : E \times \sigma \rightarrow V \)

\((_ - _)_U : U \times \sigma \times |\psi\rangle \rightarrow |\psi\rangle \)

\((_ - _)_C : C \times \sigma \times |\psi\rangle \rightarrow \sigma' \times |\psi\rangle \)

A SQIR unitary program denotes a \(2^d \times 2^d \) unitary matrix.

Expressions need environment and return bound values

Unitary statements modify quantum state

Commands modify both environment and quantum state
Denotational semantics of SQIR and OpenQASM correspond

SQIR

\[
\begin{align*}
\llbracket U_1; U_2 \rrbracket_d &= \llbracket U_2 \rrbracket_d \times \llbracket U_1 \rrbracket_d \\
\llbracket G_1 q \rrbracket_d &= \begin{cases}
\text{apply}_1(G_1, q, d) & \text{well-typed} \\
0_{2^d} & \text{otherwise}
\end{cases} \\
\llbracket G_2 q_1 q_2 \rrbracket_d &= \begin{cases}
\text{apply}_2(G_2, q_1, q_2, d) & \text{well-typed} \\
0_{2^d} & \text{otherwise}
\end{cases}
\end{align*}
\]

A SQIR unitary program denotes a \(2^d \times 2^d\) unitary matrix.

OpenQASM

Value \(V \) = Location, \(l + \text{Loc. Array, } (l_j, \ldots, l_k) \)
+ Unitary Gate, \(\lambda(x_1, \ldots, x_n).U \)

Environment \(\sigma \) = Identifier \(\rightarrow \) Value

Quantum State \(|\psi\rangle \) = \(2^d\)-dimension complex vector

\(| - |_E : E \times \sigma \rightarrow V\)

\(| - |_U : U \times \sigma \times |\psi\rangle \rightarrow |\psi'\rangle\)

\(| - |_C : C \times \sigma \times |\psi\rangle \rightarrow \sigma' \times |\psi'\rangle\)

Details elided

Expressions need environment and return bound values

Unitary statements modify quantum state

Commands modify both environment and quantum state
Semantic preservation properties are maintained during translation
Semantic preservation properties are maintained during translation

\[f : \mathcal{L}(\text{sqIR}) \rightarrow \mathcal{L}(\text{OpenQASM}) \]

\[g : \mathcal{L}(\text{OpenQASM}) \rightarrow \mathcal{L}(\text{sqIR}) \]
Semantic preservation properties are maintained during translation

\[f : \mathcal{L}(\text{SQIR}) \rightarrow \mathcal{L}(\text{OpenQASM}) \]
\[g : \mathcal{L}(\text{OpenQASM}) \rightarrow \mathcal{L}(\text{SQIR}) \]

For all valid programs in SQIR of dimension \(d\), their denotation is equivalent to the denotation of their translation, and vice versa.

\[\forall x \in \mathcal{L}(\text{SQIR}), \quad \llbracket x \rrbracket_d = \llbracket f(x) \rrbracket \]
\[\forall y \in \mathcal{L}(\text{OpenQASM}), \quad \llbracket y \rrbracket = \llbracket g(y) \rrbracket_d \]
Semantic preservation properties are maintained during translation

\[f : \mathcal{L}(\text{SQIR}) \rightarrow \mathcal{L}(\text{OpenQASM}) \]
\[g : \mathcal{L}(\text{OpenQASM}) \rightarrow \mathcal{L}(\text{SQIR}) \]

For all valid programs in SQIR of dimension \(d \), their denotation is equivalent to the denotation of their translation, and vice versa.

\[\forall x \in \mathcal{L}(\text{SQIR}), \quad \llbracket x \rrbracket_d = \| f(x) \| \]
\[\forall y \in \mathcal{L}(\text{OpenQASM}), \quad \| y \| = \llbracket g(y) \rrbracket_d \]

Further, converting from SQIR to OpenQASM and back recovers the original program.

\[\forall x \in \mathcal{L}(\text{SQIR}), \quad g(f(x)) = x \]
Semantic preservation properties are maintained during translation

\[f : \mathcal{L}(\text{SQIR}) \rightarrow \mathcal{L}(\text{OpenQASM}) \]
\[g : \mathcal{L}(\text{OpenQASM}) \rightarrow \mathcal{L}(\text{SQIR}) \]

For all valid programs in SQIR of dimension \(d \), their denotation is equivalent to the denotation of their translation, and vice versa.

\[\forall x \in \mathcal{L}(\text{SQIR}), \quad \llbracket x \rrbracket_d = \llbracket f(x) \rrbracket \]
\[\forall y \in \mathcal{L}(\text{OpenQASM}), \quad \llbracket y \rrbracket = \llbracket g(y) \rrbracket_d \]

Further, converting from SQIR to OpenQASM and back recovers the original program.

\[\forall x \in \mathcal{L}(\text{SQIR}), \quad g(f(x)) = x \]

But the reverse direction does not hold.
OpenQASM parser written in OCaml programming language

Conforms to OpenQASM specb

Uses OCamllex and Menhir parser generator

Available now as an OCaml library on OPAM package repository:

\texttt{opam install openQASM}

bCross et al. *Open Quantum Assembly Language*. arXiv:1707.03429
Ongoing and Future Work

• We’re always looking for more transformations to verify
 • Optimization from other compilers (incl. error aware)
 • More sophisticated circuit mapping
 • Compilation of classical circuits

• Performance improvements; evaluations on larger sets of benchmarks

• Larger verified toolchain
 • Translation and verification of non-unitary fragments
 • Validate our OpenQASM parser using Menhir’s Coq backend
 • Verify translation from high-level languages such as QWIRE
Conclusions

- We have developed a compiler **VOQC** and an IR **SQIR**, both implemented and verified in Coq
 - Performance is comparable to state-of-the-art compilers

- We have also taken steps to ease interoperability with industry toolchains with translation from and to OpenQASM

- Lots of ongoing work, let us know if you’re interested!

- Code:
 - github.com/inQWIRE/SQIR
 - github.com/inQWIRE/openqasm-parser