Quantum Hoare Type Theory

Kartik Singhal John Reppy

Department of Computer Science
University of Chicago

Quantum Physics and Logic (QPL) 2020
Quantum programming is inherently imperative and difficult to reason about.

In classical programming, Hoare triples are used to reason about state changes.

\[\{P\} \ c \ \{Q\} \]

\(c\) is the command to be executed; \(P, Q\) are pre and postconditions on state.

In pure functional settings, monads can encapsulate effects.

Can we combine Hoare triples with monadic types?

Yes, thanks to Hoare Type Theory!

For quantum programming?
Outline

Motivation

Background
 Hoare Type Theory (HTT). Nanevski et al, ’07
 Quantum IO Monad (QIO). Altenkirch & Green, ’09

Quantum Hoare Type Theory (QHTT)
 Examples
 Typing Rules
 Verification

Ongoing & Future Work

Conclusion
Outline

Motivation

Background

Hoare Type Theory (HTT). Nanevski et al, ’07
Quantum IO Monad (QIO). Altenkirch & Green, ’09

Quantum Hoare Type Theory (QHTT)

Examples
Typing Rules
Verification

Ongoing & Future Work

Conclusion
Hoare Types specify pre and postconditions and are very expressive

\[\Delta.\psi.\{P\} x : A \{Q\} \]

- \(P, Q\) are pre and postconditions (as before)
- \(x\) is the return value of type \(A\)
- \(\Delta\) and \(\psi\) are variable and heap contexts

For example, the type of the \texttt{alloc} primitive from HTT:

\[\forall \alpha.\Pi x : \alpha.\{\text{emp}\} y : \text{nat} \{y \mapsto_\alpha x\} \]

which is a polymorphic function that takes as input \(x\) of any type \(\alpha\) and returns a new location \(y\) of type \(\text{nat}\) after initializing it with \(x\).
Outline

Motivation

Background

Hoare Type Theory (HTT). Nanevski et al, ’07
Quantum IO Monad (QIO). Altenkirch & Green, ’09

Quantum Hoare Type Theory (QHTT)
Examples
Typing Rules
Verification

Ongoing & Future Work

Conclusion
QIO is a monadic interface for quantum programming implemented in Haskell

QIO monad is indexed by the type of computational result.

\[
\begin{align*}
\text{mkQbit} &:: \text{Bool} \rightarrow \text{QIO } \text{Qbit} \quad \text{-- initialization} \\
\text{applyU} &:: \text{U} \rightarrow \text{QIO } () \quad \text{-- apply a unitary} \\
\text{measQbit} &:: \text{Qbit} \rightarrow \text{QIO } \text{Bool} \quad \text{-- measurement}
\end{align*}
\]

Arbitrary unitaries can be defined using:

\[
\begin{align*}
\text{rot} &:: \text{Qbit} \rightarrow ((\text{Bool}, \text{Bool}) \rightarrow \text{C}) \rightarrow \text{U} \\
\text{ifQ} &:: \text{Qbit} \rightarrow \text{U} \rightarrow \text{U}
\end{align*}
\]

U is monoid with sequencing as its operation and identity as the neutral element.
Outline

Motivation

Background
 Hoare Type Theory (HTT). Nanevski et al, ’07
 Quantum IO Monad (QIO). Altenkirch & Green, ’09

Quantum Hoare Type Theory (QHTT)
 Examples
 Typing Rules
 Verification

Ongoing & Future Work

Conclusion
We further index the QIO monad with pre and postconditions to get a *Hoare* monad.

Hello Quantum World:

\[
\text{hqw} : \{\text{emp}\} \rightarrow \text{Bool} \quad \{\text{emp} \land \text{Id}(r, \text{false})\}
= \begin{array}{l}
\text{do } q \leftarrow \text{mkQbit false;}
\text{measQbit q}
\end{array}
\]

Quantum Coin Toss:

\[
\text{rnd} : \{\text{emp}\} \rightarrow \text{Bool} \quad \{\text{emp}\}
= \begin{array}{l}
\text{do } q \leftarrow \text{mkQbit false;}
\text{applyU (H q);}
\text{measQbit q}
\end{array}
\]

But how do we reason about these programs?
Outline

Motivation

Background
 Hoare Type Theory (HTT). Nanevski et al, ’07
 Quantum IO Monad (QIO). Altenkirch & Green, ’09

Quantum Hoare Type Theory (QHTT)
 Examples
 Typing Rules
 Verification

Ongoing & Future Work

Conclusion
Strongest Postcondition for Initialization

\[x \leftarrow \text{mkQbit } M; E \]

HTT uses bidirectional typing for type inference, where \(e \leftarrow A \) means ‘expression \(e \) checks against type \(A \)’, and, \(e \Rightarrow A \) means ‘expression \(e \) synthesizes the type \(A \)’.

\[
\Delta \vdash M \leftarrow \text{Bool} \\
\Delta, x : \text{Qbit}; P \circ (x \mapsto \text{state}(M)) \vdash E \Rightarrow y : B.Q \\
\Delta; P \vdash x \leftarrow \text{mkQbit } M; E \Rightarrow y : B. (\exists x : \text{Qbit}.Q)
\]
HTT uses bidirectional typing for type inference, where:

\(e \leftarrow A \) means ‘expression \(e \) checks against type \(A \)’, and,

\(e \Rightarrow A \) means ‘expression \(e \) synthesizes the type \(A \)’.

\[
\begin{align*}
\Delta \vdash M \leftarrow \text{Qbit} & \quad \Delta; \Psi; P \Rightarrow (M \leftrightarrow \neg) \\
\Delta, x : \text{Bool}; P \circ ((M \leftrightarrow \neg) \rightarrow \text{emp}) & \vdash E \Rightarrow y : B.Q \\
\Delta; P \vdash x \leftarrow \text{measQbit} M; E \Rightarrow y : B. (\exists x : \text{Bool}.Q)
\end{align*}
\]
Outline

Motivation

Background
 Hoare Type Theory (HTT). Nanevski et al, ’07
 Quantum IO Monad (QIO). Altenkirch & Green, ’09

Quantum Hoare Type Theory (QHTT)
 Examples
 Typing Rules
 Verification

Ongoing & Future Work

Conclusion
Verifying Hello Quantum World

hqw : {emp} r : Bool {emp ∧ Id(r, false)}
 = do q ⇐ mkQbit false;
 measQbit q

At the logic level:

hqw : {emp} r : Bool {emp ∧ Id(r, false)}
-- P0: emp
 = do q ⇐ mkQbit false;
-- P1: P0 ◦ (q ↦→ |0⟩)
 measQbit q
-- P2: P1 ◦ ((q ↦→ -) ◦ emp)

Successful type checking implies correctness of the program to given specifications.
Verifying Quantum Coin Toss

\[
\text{rnd} \; : \; \{\text{emp}\} \; r \; : \; \text{Bool} \; \{\text{emp}\}
\]
\[
= \text{do} \; q \leftarrow \text{mkQbit} \; \text{false}; \\
\text{applyU} \; (H \; q); \\
\text{measQbit} \; q
\]

At the logic level:

\[
\text{rnd} \; : \; \{\text{emp}\} \; r \; : \; \text{Bool} \; \{\text{emp}\}
\]

\[
\text{-- P0: emp}
\]
\[
= \text{do} \; q \leftarrow \text{mkQbit} \; \text{false};
\]

\[
\text{-- P1: P0 \circ (q \mapsto |0\rangle)}
\]
\[
\text{applyU} \; (H \; q);
\]

\[
\text{-- P2: P1 \circ ((q \mapsto |0\rangle) \mapsto (q \mapsto |+\rangle))}
\]
\[
\text{measQbit} \; q
\]

\[
\text{-- P3: P2 \circ ((q \mapsto -) \mapsto \text{emp})}
\]
Ongoing & Future Work

Tractable semantics for unitary application
 Unitaries as path-sum actions (Amy, QPL ’18)
 based on Feynman path integrals

Quantum Assertion Logic
Linear Dependent Type Theory: FKS, LICS ’20
Circuits as Arrows: VAS06, Math. Struct. Comput. Sci. 16(3)

Behavioural Types
 Resource Theories: RSSL19 (Draft)
 Heisenberg Representation of QM: RSSL, QPL ’20
Conclusion

We combined ideas from Hoare Type Theory and Quantum IO Monad to develop Quantum Hoare Type Theory, a dependently typed functional language with support for quantum computation.

This is ongoing work with potential to be a unified framework for programming, specification, and reasoning about quantum programs.

Many exciting challenges ahead!